Answer #119

The answer is (b): 2.83 seconds, as can be seen by clicking your mouse on the photograph below.

The equation to determine how far an accelerated body moves as a function of time is:

\[x = \frac{1}{2} a t^2. \]

where \(a \) is the acceleration.

The time for the accelerating body \(M \) to move the distance \(D \) between the two photocell gates due to the gravitational force on \(m \) is given by:

\[t = \sqrt{\frac{2D}{(M+m)g}} \approx \sqrt{\frac{2DM}{mg}} = t_0, \]

where \(g \) is the acceleration of gravity. Substituting \(2M \) for \(M \) yields approximately \(t = \sqrt{2}t_0 \) or 2.83 seconds. Because \(M \gg m \), we have dropped the \(m \) from the numerator in the final relation for \(t_0 \) in the equation above.

What error will this make in the final calculated value? The calculated time taken for mass \(m \) to accelerate mass \(M \) will be too short by the small fraction:

\[\sqrt{1 + \frac{m}{M}}, \]

which is smaller than the experimental error in the apparatus.
For questions and comments regarding the *Question of the Week* contact [Dr. Richard E. Berg](mailto:Dr.Richard.E.Berg@UniversityOfMaryland.edu) by e-mail or using phone number or regular mail address given on the [Lecture-Demonstration Home Page](http://www.physics.umd.edu).