Answer #123

Part 1:

The answer is (b): 1.41 seconds, as can be seen by clicking your mouse on the photograph below. (Pretty good for an old air track!)

The equation to determine how far an accelerated body moves as a function of time is:

\[x = \frac{1}{2}a t^2. \]

where \(a \) is the acceleration.

The time for the accelerating body \(M \) to move the distance \(D \) between the two photocell gates due to the gravitational force on \(m \ll M \) is given by:

\[t = \sqrt{\frac{2Dm}{mg}} = t_0, \]

where \(g \) is the acceleration of gravity. Substituting \(D/2 \) for \(D \) yields \(t = t_0/\sqrt{2} \) or approximately 1.41 seconds.

Part 2:

The answer is (b): 1.41 seconds, as can be seen by clicking your mouse on the photograph below. (Well, it's a bit slow, but that's experimental physics!)
The equation to determine how far an accelerated body moves as a function of time is:

\[x = \frac{1}{2}a t^2. \]

where \(a \) is the acceleration.

The time for the accelerating body \(M \) to move the distance \(D \) between the two photocell gates due to the gravitational force on \(m \) is given by:

\[t = \sqrt{\frac{2DM}{mg}} = t_0, \]

where \(g \) is the acceleration of gravity. Substituting \(2m \) for \(m \) yields \(t = t_0/\sqrt{2} \) or approximately 1.41 seconds.

For questions and comments regarding the Question of the Week contact Dr. Richard E. Berg by e-mail or using phone number or regular mail address given on the Lecture-Demonstration Home Page.