Answer #135

Part 1:

The answer is (c): 2.00 seconds, as can be seen by clicking your mouse on the photograph below (well, almost).

The equation to determine how far an accelerated body moves as a function of time is:

\[x = \frac{1}{2}a t^2. \]

where \(a \) is the acceleration.

The time for the accelerating body \(M \) to move the distance \(D \) between the two photocell gates due to the gravitational force on \(m \) is given by:

\[t = \sqrt{\frac{2DM}{mg}} = t_0, \]

where \(g \) is the acceleration of gravity. Substituting \(2M \) for \(M \) and \(2m \) for \(m \) yields approximately \(t = t_0 \) or 2.00 seconds, reasonably close to the value obtained in the video.

Part 2:

The answer is (d): 2.00 seconds, as can be seen by clicking your mouse on the photograph below.
The equation to determine how far an accelerated body moves as a function of time is:

\[x = \frac{1}{2} a t^2. \]

where \(a \) is the acceleration.

The time for the accelerating body \(M \) to move the distance \(D \) between the two photocell gates due to the gravitational force on \(m \) is given by:

\[t = \sqrt{\frac{2DM}{mg}} = t_0, \]

where \(g \) is the acceleration of gravity. Substituting \(D/2 \) for \(D \) and \(2M \) for \(M \), the factors of two cancel each other, yielding \(t = t_0 \) or approximately 2.00 seconds, reasonably close to the value obtained in the video.