Breadcrumb
3A95.50 - Chaos Pendula - Chaos Toys
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Code Number: 3A95.50
Demo Title: Chaos Pendula - Chaos Toys
Condition: Excellent
Principle: Potential to Kinetic Energy, Simple Harmonic Motion
Area of Study: Acoustics
Equipment:
Chaos Pendulums, Double Planar Pendulum, Toy Pendulum Models, and Alogo Pendulum (Ring Pendulum).
Procedure:
See also 3A95.50 in Oscillations/Acoustics.
The double planar pendulum shows what the addition of another degree of freedom does to the behavior of a pendulum. The chaos Pendula are designed so that you may go from one degree of freedom to 5 degrees of freedom in many different configurations, usually used for a deeper understanding of chaotic behavior.
The Alogo pendulum may be started with either the ring in the upward or the downward position by adding the proper counter weight.
References:
- William A. (Toby) Dittrich, "Drop Tower Physics", TPT, Vol. 52, #9, Sept. 2014, p. 415.
- Fabio Augusto Meira Cassaro, Sergio da Costa Saab, Luiz Antonio Bastos Bernardes, and Jeremias Borges da Silva, "The 'Sparking Chaotic Pendulum': Trajectories of a Chaotic Pendulum Revealed", TPT, Vol. 42, #1, Jan. 2004, p. 47.
- Douglas Oliver, "A Chaotic Pendulum", TPT, Vol. 37, #3, Mar. 1999, p. 174.
- R. W. Robinett and P. E. Sokol, "Investigating Physical Pendula with K’NEXTM", TPT, Vol. 34, #7, Oct. 1996, p. 427.
- Donald H. Esbenshade Jr., "Computer-Specific Initial Conductions and Chaos", TPT, Vol. 32, #1, Jan. 1994, p. 40.
- Alan Cromer and Michael B. Silevitch, "Chaos in the Corridor", TPT, Vol. 30, #6, Sept. 1992, p. 382.
- Marvin L. De Jong, "Chaos and the Simple Pendulum", TPT, Vol. 30, #2, Feb. 1992, p. 115.
- Robert Ehrlich, "Three Mechanical Demonstrations of Chaos", TPT, Vol. 28, #1, Jan. 1990, p. 26.
- Joe Pizzo, "The Perplexing Pendulum", TPT, Vol. 24, #6, Sept. 1986, p. 360.
- Donna A. Berry, "A 'Perpetual Motion' Toy?", TPT, Vol. 20, #5, May 1982, p. 319.
- R. D. Edge, "Coupled and Forced Oscillations", TPT, Vol. 19, #7, Oct. 1981, p. 485.
- R. Mathevet, P. Marchou, C.M. Fabre, N. Lamrani, N. Combe, "Coriolis Acceleration and Critical Slowing-Down: A Quantitative Laboratory Experiment", AJP, Vol. 92, #2, Feb. 2024, p. 100.
- T. Splith, A. Kaps, F. Stallmach, "Phase Plot of a Gravity Pendulum Acquired Via the MEMS Gyroscope and Magnetic Field Sensors of a Smartphone", AJP, Vol. 90, #4, April 2022, p. 314.
- M. Z. Rafat, M. S. Wheatland, and T. R. Bedding, "Dynamics of Double Pendulum With Distributed Mass", AJP, Vol. 77, #3, Mar. 2009, p. 216.
- Robert DeSerio, "Synchronous Analog I/O For acquisition of Chaotic Data in Periodically Driven Systems", AJP, Vol. 72, #4, Apr. 2004, p. 553.
- Priscilla W. Laws, "A Unit on Oscillations, Determinism and Chaos for Introductory Physics Students", AJP, Vol. 72, #4, Apr. 2004, p. 446.
- Robert C. Hilborn, "Sea Gulls, Butterflies, and Grasshoppers: A Brief History of the Butterfly Effect in Nonlinear Dynamics", AJP, Vol. 72, #4, Apr. 2004, p. 425.
- Robert DeSerio, "Chaotic Pendulum: The Complete Attractor", AJP, Vol. 71, #3, Mar. 2003, p. 250.
- John P. Berdahl and Karel Vander Lugt, "Magnetically Driven Chaotic Pendulum, AJP, Vol. 69, #9, Sept. 2001, p. 1016.
- Azad Siahmakoun, Valentina A. French, and Jeffrey Patterson, "Nonlinear Dynamics of a Sinusoidally Driven Pendulum in a Repulsive Magnetic Field", AJP, Vol. 65, #5, May 1997, p. 393.
- R. B. Levien and S. M. Tan, "Double Pendulum: An Experiment in Chaos", AJP, 61, #11, Nov. 1993, p. 1038.
- Troy Shinbrot, Celso Grebogi, Jack Wisdom, and James Yorke, "Chaos in a Double Pendulum", AJP, Vol. 60, #6, June 1992, p. 491.
- Stephen F. Felszeghy, "On the Adequacy of Newtonian Particle Mechanics for Solving the Rigid Double Pendulum Problem", AJP, Vol. 53, #3, Mar. 1985, p. 230.
- W. Stadler, "On the Adequacy of Newtonian Particle Mechanics for Solving the Rigid Double Pendulum Problem", AJP, 53, #3, Mar 1985, p. 233.
- W. Stadler, "Inadequacy of the Usual Newtonian Formulation for Certain Problems in Particle Mechanics", AJP, 50, #7, July 1982, p. 595.
- Robert DeSerio, "Addendum: Lyapunov Exponent Calculation", CP- Ly 1.
- Robert DeSerio, "Parts List for Chaotic Pendulum Experiment".
- Robert DeSerio, "Savitsky - Golay Filters", June 2007, SG 1.
- Robert DeSerio, "Savitsky - Golay Filters for 33 Point Fourth Order Filtering".
- Robert DeSerio, "Chaotic Pendulum", University of Florida, Feb. 2007, CP 1.
- Robert J. Reiland, "4. A Chaos Generator with Magnets", Teaching About Magnetism, p. 4.3.
- Jodi and Roy McCullough, "Magnetism with Kinetic Dancers", The Role of Toys in Teaching Physics", p. 4.168.
- David Kutliroff, "50, Inverse Square Law Force Field Demonstrations with Magnetic Mono-Poles", 101 Classroom Demonstrations and Experiments For Physics Teachers, p. 112.
- Julien Clinton Sprott, "1.20, Chaotic Pendulums", Physics Demonstrations, ISBN 0-299-21580-6, p. 57.
- Tom DeFayette and Gene Clark, "A Double Pendulum Construction From Inline Roller Skate Wheels", Trinity University, Department of Physics.
- "A Perpetual-Motion Puzzle", The Boy Scientist, p. 222.
- "A Perpetual - Motion Puzzle", The Boy Mechanic, ISBN 978-1-58816-509-1, p. 201.
- Ian Stewart, "Dicing With Death In The Solar System", Analog Science Fiction/Science Fact Magazine, p. 57 - 73.
- Peter Weiss, "The Physics of Flutter", How it Works - Science Supplement, Spring 2000, p. 224 - 228.
- Ron Hipschman, "Chaotic Pendulum", Exploratorium Cookbook III, 200.1 - 200.3.
- "Strange Attractor", The Exploratorium Science Snackbook, p. 95.1 - 95.2.
- "Strange Attractor", The Exploratorium Science Snackbook Force and Motion, p. 89 - 92.
- Neil. A. Downie, "Chaotic Regularity", Ink Sandwiches, Electric Worms and 37 Other Experiments for Saturday Science, p. 4.
- Neil. A. Downie, "Chaotic Clocks", Ink Sandwiches, Electric Worms and 37 Other Experiments for Saturday Science, p. 1.
- William R. Wellnitz, "A Confused Magnet", Be a Kid Physicist, 1993, p. 80 - 81.
- Paul Noel, "Infinite Beast Instruction Manual", AAPT Summer Meeting 2019.
- Robert Ehrlich, "C.14. Chaotic Motion of a Pendulum", Turning the World Inside Out and 174 Other Simple Physics Demonstrations, p. 35 - 37.
- Bobby Mercer, "Crazy Chaos Pendulum", Junk Drawer Physics, p. 151.